

Corrosion	The destruction of materials by chemical reactions with substances in the environment	An example of this is iron rusting; iron reacts with oxygen from the air to form iron oxide (rust) water needs to be present for iron to rust.
Preventing corrosion	Coatings can be added to metals to act as a barrier	Examples of this are greasing, painting and electroplating. Aluminium has an oxide coating that protects the metal from further corrosion.
Sacrificial corrosion	When a more reactive metal is used to coat a less reactive metal	This means that the coating will react with the air and not the underlying metal. An example of this is zinc used to galvanise iron.

NPK fertilisers	These contain nitrogen, phosphorous and potassium	Formulations of various salts containing appropriate percentages of the elements.
Fertiliser examples	Potassium chloride, potassium sulfate and phosphate rock are obtained by mining	Phosphate rock needs to be treated with an acid to produce a soluble salt which is then used as a fertiliser. Ammonia can be used to manufacture ammonium salts and nitric acid.

Production and uses fertilisers of NPK

	1	Alloys	•	elements, one of which must be a metal e.g. Bronze is an alloy of per and tin and Brass is an alloy of copper and zinc.			
are	<u>s</u>	Gold		ally an alloy with silver, copper and zinc. The carat of the jewellery is mount of gold in it e.g. 18 carat is 75% gold, 24 carat is 100% gold.			
	eria	are useful	Alloys of iron, carbon and other metals.				
	mat		High carbon steel is strong but brittle.				
	L L		Low carbon steel is softer and easily shaped.				
			Steel containing chromium and nickel (stainless) are hard and corrosion resistant.				
	ן ש		Aluminium alloys are low density.				
ition	Alloys		Ceramics,	polymers that do not melt wi			

polymers and composites

The Haber process

Thermosetting Polymers

nen they are heated.

Thermosoftening heated.

polymers that melt when they are

AQA GCSE Using resources 2 **CHEM ONLY**

> The Haber process and the use of **NPK fertilisers**

Using materials

Composite materials

A mixture of materials put together for a specific purpose e.g. strength

carbonate and limestone. Borosilicate glass, made from sand and boron trioxide, melts at higher temperatures than soda-lime glass.

Soda-lime glass, made by heating sand, sodium

MDF wood (woodchips, shavings, sawdust and resin)

Concrete (cement, sand and gravel)

Ceramic Made from clay materials

Made by shaping wet clay and then heating in a furnace, common examples include pottery and bricks.

Many **Polymers** monomers can make polymers These factors affect the properties of the polymer. Low density (LD) polymers and high density (HD) polymers are produced from ethene. These are formed under different

increasing the amount of valuable product.

		со	nditions.
The Haber process	Used to manufactul ammonia	re	Ammonia is used to produce fertilisers Nitrogen + hydrogen → ammonia
Raw materials	Nitrogen from the air while hydrogen from natural gas		Both of these gases are purified before being passed over an iron catalyst. This is completed under high temperature (about 450°C) and pressure (about 200 atmospheres).
Catalyst	Iron		The catalyst speeds up both directions of the reaction, therefore not actually

Phosphate rock	
Treatment	Products
Nitric acid	The acid is neutralised with ammonia to produce ammonium phosphate, a NPK fertiliser.
Sulfuric acid	Calcium phosphate and calcium sulfate (a single superphosphate).
Phosphoric acid	Calcium phosphate (a triple superphosphate).

The Haber process – conditions and equilibrium		
Pressure	The reactants side of the equation has more molecules of gas. This means that if pressure is increased, equilibrium shifts towards the production of ammonia (Le Chatelier's principle). The pressure needs to be as high as possible.	
Temperature	The forward reaction is exothermic. Decreasing temperature increases ammonia production at equilibrium. The exothermic reaction that occurs releases energy to surrounding, opposing the temperature decreases. Too low though and collisions would be too infrequent to be financially viable.	