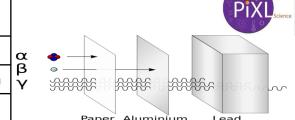


Radius of an atom 1 X 10⁻¹⁰m



Electrons gained Negative ion

Atom structure

Electrons lost Positive ion

Ionising Range in air Penetration power Decay power Alpha Few cm Very strong Stopped by paper Beta Few m Medium Stopped by Aluminium Great distances Weak Stopped by thick lead Gamma

Atom	Same number of protons and electrons
Ion	Unequal number of electrons to protons
Mass number	Number of protons <u>and</u> neutrons
Atomic number	Number of protons

Particle	Charge	Size	Found
Neutron	None	1	In the nucleus
Proton	+	1	In the nucleus
Electron	-	Tiny	Orbits the nucleus

sotope	⁶ ₃ Li

Different forms of an element with the same number of protons but different number of neutrons

Discovery of the nucleus

Democritus	Suggested idea of atoms as small spheres that cannot be cut.		
J J Thomson (1897)	Discovered electrons—emitted from surface of hot metal. Showed electrons are negatively charged and that they are much less massive than atoms.		
Thomson (1904)	Proposed 'plum pudding' model – atoms are a ball of positive charge with negative electrons embedded in it.		
Geiger and Marsden (1909)	Directed beam of alpha particles (He ²⁺)at a thin sheet of gold foil. Found some travelled through, some were deflected, some bounced back.		
Rutherford (1911)	Used above evidence to suggest alpha particles deflected due to electrostatic interaction between the very small charged nucleus, nucleus was massive. Proposed mass and positive charge contained in nucleus while electrons found outside the nucleus which cancel the positive charge exactly.		
Bohr (1913)	Suggested modern model of atom – electrons in circular orbits around nucleus, electrons can change orbits by emitting or absorbing electromagnetic radiation. His research led to the idea of some particles within the nucleus having positive charge; these were named protons.		
Chadwick (1932)	Discovered neutrons in nucleus – enabling other scientists to account for mass of atom.		

Radioactive decay	Unstable atoms randomly emit radiation to become stable	
Detecting	Use Geiger Muller tube	
Unit	Becquerel	
Ionisation	All radiation ionises	

Atoms and **Isotopes**

Atoms and Nuclear Radiation

	Decay	Emitted from nucleus	Changes in mass number and atomic number		
	Alpha (α)	Helium nuclei (⁴ ₂ He)	-4	-2	$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$
	Beta (β)	Electron $\binom{0}{-1}e$	0	+1	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}e$
	Gamma (γ)	Electromagnetic wave	0	0	$- \frac{^{99}Tc \rightarrow ^{99}Tc + \gamma}{^{43}Tc + \gamma}$
_	Neutron	Neutron	-1	0	2000- east 11 156- 11 150-

Contamination **Unwanted presence of radioactive atoms** Irradiation Person is in exposed to radioactive source

PHYSICS ONLY: Hazards and uses of Radioactive emissions and of background radiation

Used to treat illnesses

e.g. cancer

Si	evert		Unit measuring do	se of radiation	
/	life	of	its initial radioactivity	Number of half-lives	
	Haif	Ine	ϵ time taken to lose half \downarrow		

					waste
Uses		isotopes have nt half lives	Short half-lives used in high doses, long half lives used in low dose		n high doses, long half lives used in low doses.
Tracers	Used within body in da		maged areas. P	If life injected, allowed to circulate and collect ET scanner used to detect emitting radiation. mma as alpha does not penetrate the body.	

Background

Fuel rods	Made of U-238, 'enriched' with U-235 (3%). Long and thin to allow neutrons to escape, hitting nuclei.
Control rods	Made of Boron. Controls the rate of reaction. Boron absorbs excess neutrons.
Concrete	Neutrons hazardous to humans – thick concreate shield protects workers.

	>
	ğ
	a
_	_
_	a
_	J.
	2
	=
	Œ
S	_
7 (_
Ü	π
	"
S	Œ
Ų,	_
_	-
	\succeq
_	_
	_

Nuclear fission and fusion

One large unstable fission nucleus splits to make two smaller nuclei Nuclear fusion Two small nuclei join

Radiation

therapy

Neutron hits U-235 nucleus, nucleus absorbs neutron, splits emitting two or three neutrons and two smaller nuclei. Process also releases energy.

Difficult to do on Earth – huge

amounts of pressure and temperature

needed.

reaction formed Used in nuclear power stations

Process repeats, chain

Cancer cells killed by gamma rays. High dose used to kill cells. Damage to healthy cells prevented by focussed gamma ray gun.

Occurs in stars

Constant low level environmental radiation,

e.g. from nuclear testing, nuclear power,

to make one larger

nucleus