

Atom	The smallest part of an element that can exist	Have a radius of around 0.1 nanometres and have no charge (0).
Element	Contains only one type of atom	Around 100 different elements each one is represented by a symbol e.g. O, Na, Br.
Compound	Two or more elements chemically combined	Compounds can only be separated into elements by chemical reactions.

•			
Name of Particle	Relative Charge	Relative Mass	
Proton	+1	1	
Neutron	0	1	
Electron	-1	Very small	

Electronic shell	Max number of electrons
1	2
2	8
3	8
4	2

Relative electrical charges of subatomic particles

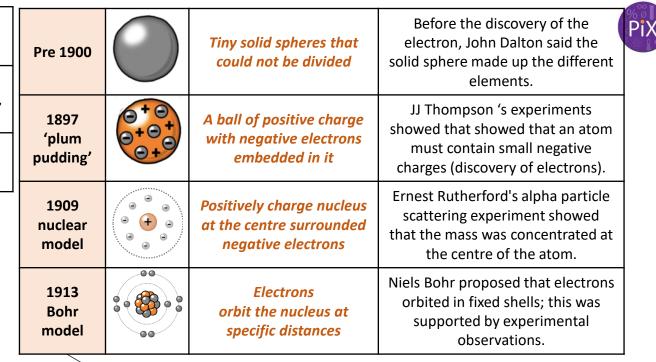
7 ← Li 3 ←	Mass number	The sum of the protons and neutrons in the nucleus	
	Atomic number	The number of protons in the atom	Number of electrons = number of protons

Mixtures

Two or more elements or compounds not chemically combined together

Can be separated by physical processes.

Electronic structures


AQA GCSE

Atomic structure

and periodic

table part 1

Method	Description	Example
Filtration	Separating an insoluble solid from a liquid	To get sand from a mixture of sand, salt and water.
Crystallisation	To separate a solid from a solution	To obtain pure crystals of sodium chloride from salt water.
Simple distillation	To separate a solvent from a solution	To get pure water from salt water.
Fractional distillation	Separating a mixture of liquids each with different boiling points	To separate the different compounds in crude oil.
Chromatography	Separating substances that move at different rates through a medium	To separate out the dyes in food colouring.

The development of the model of the atom

James Chadwick Provided the evidence to show the existence of neutrons within the nucleus

Rutherford's scattering

A beam of alpha particles are directed at a very thin gold foil

Most of the alpha particles passed right through.

A few (+) alpha particles were deflected by the positive nucleus.

A tiny number of particles reflected back from the

nucleus.

Chemical equations

Show chemical reactions - need reactant(s) and product(s) energy always involves and energy change

Law of conservation of mass states the total mass of products = the total mass of reactants.

Symbol equations

Word

equations

Uses words to show reaction
reactants → products
magnesium + oxygen → magnesium oxide

Uses symbols to show reaction reactants → products

 $2Mg + O_2 \rightarrow 2MgO$

Does not show what is happening to the atoms or the number of atoms.

Shows the number of atoms and molecules in the reaction, these need to be balanced.

Relative atomic mass

Isotopes

Atoms of the same element with the same number of protons and different numbers of neutrons

³⁵Cl (75%) and ³⁷Cl (25%)

Relative abundance = $(\% \text{ isotope } 1 \times \text{mass isotope } 1) + (\% \text{ isotope } 2 \times \text{mass isotope } 2) \div 100$ e.g. $(25 \times 37) + (75 \times 35) \div 100 = 35.5$