

Enzymes catalyse (increase the rate of) specific reactions in living organisms

The 'lock and key theory' is a simplified model to explain enzyme action

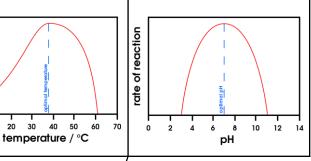
Enzymes catalyse specific reactions in living organisms due to the shape of their active site

Digestive enzymes speed up the conversion of large insoluble molecules (food) into small soluble molecules that can be absorbed into the bloodstream

The activity of enzymes is affected by changes in temperature and pH

Large changes in temperature or pH can stop

the enzyme from working (denature)


Enzyme changes shape (denatures) the

substrate no longer fits the active site.

Enzymes activity has an optimum temperature

rate of reaction

Enzyme activity has an optimum pH

pH too high or too

low

Enzymes in digestion

The human digestive system

AQA GCSE
ORGANISATION
Part 1

Principles of organisation

More energy consumed in food and drink than used

An organ system in which organs work together to digest and absorb food.

obesity

Non-communicable

Food tests

diseases

Linked to increased rates of cardiovascular disease and development of diabetes type 2.

Sugars (glucose)

Starch

Biuret

liver

oesophagus

pancreas

intestines

large

mouth

small

intestines

gall bladder

Biuret reagent

Benedicts' test
Orange to brick red precipitate.

Turns black.

Mauve or purple solution.

Carbohydrases (e.g. amylase)

Proteases

Lipases

Bile (not an enzyme)

Made in salivary glands, pancreas, small intestine

Temperature too high

Break down carbohydrates to simple sugar (e.g. amylase breaks down starch to glucose).

Made in stomach, pancreas

Break down protein to amino acids.

Made in pancreas (works in small intestine)

Break down lipids (fats) to glycerol and fatty acids).

Made in liver, stored in gall bladder. Emulsifies lipids to increase surface area to increase the rate of lipid break down by lipase. Changes pH to neutral for lipase to work The products of digestion are used to build new carbohydrates, lipids and proteins. Some glucose is used for respiration.

Cells, tissues, organs and systems

The basic building blocks Cells e.g. muscle cells of all living organisms. A group of cells with a e.g. muscle **Tissues** similar structure and tissue function. Aggregations (working together) of tissues **Organs** e.g. the heart performing a specific function. Organs working together e.g. the to form organ systems, Organ circulatory systems which work together to system form an organism.