

Respiration, stored as insoluble starch, fats or oils for storage, cellulose for cell walls, combine with nitrates from the soil to form amino acids for protein synthesis

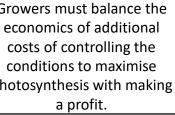
Plants use the glucose produced in photosynthesis in a variety of ways

Photosynthetic reaction

The plant manufactures glucose from carbon dioxide and water using energy transferred from the environment to the chloroplasts by light

	Plants make use
sis	of light energy
the	from the
syn	environment
Photosynthesis	(ENDOTHERMIC)
ho	to make food
4	(glucose)

→ Oxygen + Glucose Carbon dioxide + Water


> \rightarrow O_2 + $C_6H_{12}O_6$ H_2O CO_2

The rate of photosynthesis is affected by temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll

Factors affecting the rate of photosynthesis	Factor	How the rate is affected	Limiting factors (why the rate stops going up)
	Temperature	As the temperature of the environment the plant is in increases rate of photosynthesis increases (up to a point) as there is more energy for the chemical reaction.	Photosynthesis is an enzyme controlled reaction. If the temperature increases too much, then the enzymes become denatured and the rate of reaction will decrease and stop
	Light intensity	Light intensity increases as the distance between the plant and the light sources increases. As light intensity increases so does the rate of photosynthesis (up to a point) as more energy is available for the chemical reaction.	At point X another factor is limiting the rate of photosynthesis. This could be carbon dioxide concentration, temperature or the amount of chlorophyll
	Carbon dioxide concentration	Carbon dioxide is needed for plants to make glucose. The rate of photosynthesis will increase when a plant is given higher concentrations of carbon dioxide (up to a point).	At point X another factor is limiting the rate of photosynthesis. This could be light intensity, temperature or the amount of chlorophyll
	Amount of chlorophyll	Chlorophyll is a photosynthetic pigment that absorbs light and allows the reaction between water and carbon dioxide to occur (photosynthesis)	Another factor could limit the rate of photosynthesis. This could be light intensity, temperature or the carbon dioxide concentration

greenhouses to reduce limiting Used to provide optimum factors can improve crop yields Heating temperatures for maximum plant Control conditions in growth. Enhances the natural sunlight **Artificial** especially overnight and on lighting cloudy days. **Extra** Gas can be pumped into the air carbon inside the greenhouse. dioxide

Growers must balance the economics of additional costs of controlling the conditions to maximise photosynthesis with making a profit.

Rate of photosynthesis HT Only

AQA GCSE BIOENERGETICS part

Rate of photosynthesis

(arbitrary units) Light Intensity Χ 0.05 0.1 0.15 Carbon dioxide concentration %

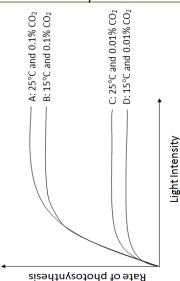
distance between the plant and the light source you quarter the light intensity **Graph lines C and D**:

Light intensity obeys the inverse square law. This means that if you double the

If temperature is increased by 10°C then a slight increase in rate of photosynthesis occurs.

temperature are increased the Graph lines A and D: If carbon increases significantly up to a dioxide concentration and rate of photosynthesis point.

Graph Lines A and B: If carbon dioxide concentration is increased from 0.01% to 0.1% then a large increase in rate occurs up to a point.


Explain graphs of

two or three

factors and decide

which is the

limiting factor

tissue can be damaged when carbon dioxide concentrations exceed 0.1%

limited by temperature and/or amount of chlorophyll. Plant

better hope – brighter future