Proportional reasoning & Similar shapes H

What do I need to be able to do?

By the end of this unit you should be able to:

- Recognise and interpret graphs that illustrate inverse & direct proportion
- Interpret equations that describe direct & inverse proportion
- Interpret equations that describe inverse proportion
- Solve inverse and direct proportion problems
- Identify congruence & similarity of shapes Finding missing lengths in similar shapes
- Know and use the criteria for triangles to be congruent (SSS, SAS, ASA, RHS)

Vocabulary

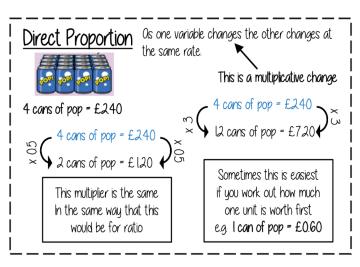
Direct Proportion: where the ratio between two quantities is a constant value. When the value of one variable increases, the other also increases

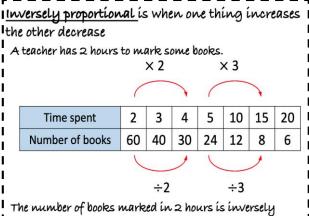
Inverse Proportion: the relationship between two variables. When the value of one variable increases, the other

decreases, so their product is unchanged

Multiplier: the number you are multiplying by

Enlarge: to make a shape bigger by a given multiplier (scale


Multiplier: the number you are multiplying by


Ratio: a statement of how two numbers compare Similar: when one shape is an enlargement of another

Congruent: the same size and shape

Corresponding: items that appear in the same place in two

similar shapes

proportional to the time spent on each book.

Constant of proportionality

 \propto is the symbol we use to show that one variable is in proportion to another.

Direct proportion $y \propto x$

g is directly proportional to the square root of hWhen g = 18, h = 16 Find the possible values of h when a = 2

$$g \propto \sqrt{h}$$

$$g = k\sqrt{h}$$

$$18 = k\sqrt{16}$$

$$18 = 4k$$

$$4.5 = k$$

$$g = 4.5\sqrt{h}$$

$$\frac{2}{4.5} = \sqrt{h}$$

$$\frac{2}{4.5} = \sqrt{h}$$

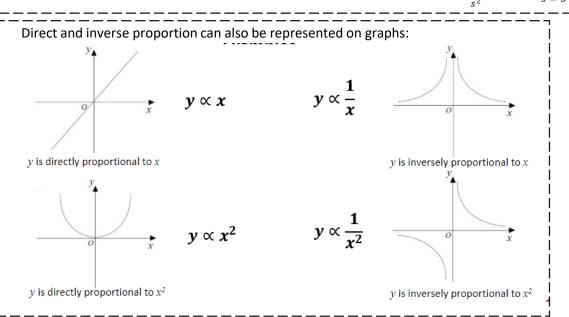
$$\frac{4}{9} = h$$

$$\frac{4}{9} = h$$

Inverse proportion $y \propto \frac{1}{2}$

The time taken, t, for passengers to be checked-in is inversely proportional to the square of the number of staff, s, working.

It takes 30 minutes passengers to be checked-in when 10 staff are working. How many staff are needed for 120

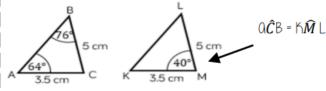

$$t \propto \frac{1}{s^{2}} \qquad t = \frac{3000}{s^{2}}$$

$$t = \frac{k}{s^{2}} \qquad 120 = \frac{3000}{s^{2}}$$

$$30 = \frac{k}{10^{2}} \qquad s^{2} = \frac{3000}{120}$$

$$3000 = k \qquad s = \sqrt{25}$$

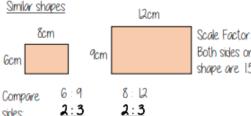
$$t = \frac{3000}{120} \qquad s = \sqrt{5}$$



Congruent figures

Congruent figures are identical in size and shape — they can be reflections or rotations of each

Congruent shapes are identical — all corresponding sides and angles are the same size


Because all the anales are the same and OC=KM BC=LM triangles QBC and KLM are **congruent**

ldentify similar shapes

Ongles in similar shapes do not

eg if a triangle gets bigger the angles can not go above 1800

Both sides on the bigger shape are 15 times bigger i

Both sets of sides are in the same ratio

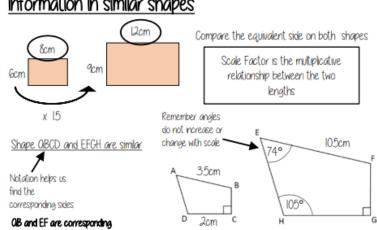
Congruent triangles

Side-side-side

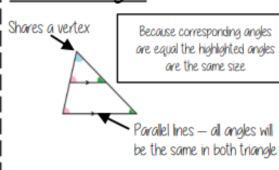
all three sides on the triangle are the same size

Ongle-side-angle

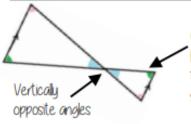
Two angles and the side connecting them are equal in two triangles


Side-angle-side

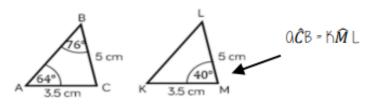
Two sides and the anale in-between them are equal in two triangles (it will also mean the third side is the same size on both shapes)

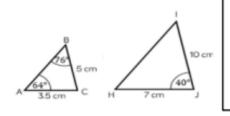

Right angle-hypotenuse-side

The triangles both have a right angle, the hypotenuse and one side are the same


Information in similar shapes

Similar triangles


Os all angles are the same this is similar — it only one pair of sides are needed to show equality


Oll the angles in both triangles are the same and so similar

Congruence and Similarity

Congruent shapes are identical — all corresponding sides and angles are the same size

Because all the anales are the same and OC=KM BC=LM triangles OBC and KLM are congruent

Because all angles are the same, but all sides are enlarged by 2 OBC and HU are similar