Controls in the

human

body

Blood glucose concentration **Body**

temperature

Water levels

These automatic control systems may involve nervous responses or chemical responses.

The regulation of internal conditions of a cell or organism to maintain optimum conditions for function.

Homeostasis maintains optimal conditions for enzyme action and all cell functions.

Homeostasis

Water and nitrogen balance (Biology only)

	/	
If body cells lose or gain too much water by osmosis they do no function efficiently.	Uncontrolled water/ion urea loss	Water exhaled in lungs, water, ions and urea in sweat.
	Controlled water/ion/urea loss	Via the kidneys in urine.

Kidney failure is treated by organ transplant or dialysis.

Kidney function

Maintain water balance of the body.

Produce urine by filtration of the blood and selective reabsorption of glucose, ions and water.

A dialysis machine removes urea from the blood by diffusion while maintaining ion and glucose levels.

(HT only) **ADH**

Acts on kidney tubules to control water levels. Released by pituitary gland when blood is too concentrated. Water is reabsorbed back into the blood from the kidney tubules (NEGATIVE FEEDBACK).

Thermoregulatory

centre (hypothalamus)

AQA GCSE

HOMEOSTASIS

AND RESPONSE

PART 2

Control of body

temperature

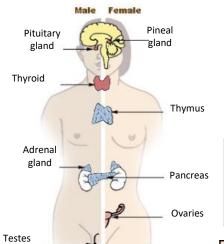
(Biology only)

Monitoring body temperature

low

Thermoregulatory Contains receptors sensitive to the temperature centre of the blood.

Contains temperature receptors, sends nervous Skin impulses to the thermoregulatory centre.


Blood vessels dilate (vasodilation), **Body temperature** Too sweat produced from sweat high glands. Blood vessels constrict Too (vasoconstriction), sweating stops,

muscles contract (shivering).

(HT) Thermal energy is lost from blood near the surface of the skin, sweat evaporates transferring thermal energy.

(HT) Thermal energy loss at the surface of the skin is reduced, respiring muscles cells transfer chemical to thermal energy.

Human endocrine system

system Composed of glands which secrete chemicals called hormones directly into the bloodstream.

The blood carries the hormone to a target organ where is produces an effect. Compared to the nervous system effects are slower but act for longer.

Pituitary gland

'Master gland'; secretes several hormones into the blood

Stimulates other glands to produce hormones to bring about effects.

Negative feedback (HT only)	Adrenaline	Produced in adrenal glands, increases breathing/heart rate, blood flow to muscles, conversion glycogen to glucose. Prepares body for 'fight or flight'.
	Thyroxine	Produced in the thyroid gland, stimulates the basal metabolic rate. Important in growth and development.

development.

Increasing thyroxine levels prevent the release of thyroid stimulating hormone which stops the release of thyroxine.

Control of

blood glucose

concentration

Diabetes Type 1 Type 2 Pancreas fails to produce sufficient Obesity is a risk factor. Body cells no insulin leading to uncontrolled longer respond to insulin. Common blood glucose levels. Normally treatments include changing by diet treated by insulin injection. and increasing exercise.

Blood glucose concentration

Monitored and controlled by the pancreas

Too high (HT only) Too low Pancreas produces Pancreas produces the hormone insulin, the hormone glucose moves from glucagon that the blood into the causes glycogen to cells. In liver and be converted into muscle cells excess glucose and glucose is converted released into the to glycogen for blood. storage.

<u>negative feedback</u> system. Insulin is released to reduce glucose levels and which cause the pancreas to release glucagon (HT) Rising glucose levels inhibit the release of glucagon in a