

Very rarely a mutation will lead to a new phenotype which if is suited to environmental change can lead to rapid change in the species.

Embryo screening: small piece of developing placenta removed to check for presence of faulty genes

Gene therapy: replacing the faulty allele in somatic cells with a normal allele

Mother (

Amy

Peter

Inherited disorders

Female without disorder

Female with disorder

Male without disorder

AQA GCSE

INHERITANCE,

VARIATION AND

EVOLUTION PART 2

Male with disorder

Embryo	Economic	Costly and not 100% reliable.
screening /gene	Social	Not available to everyone (due to cost).
issues Ethical	Should only 'healthy' embryos be implanted following screening.	

Mutations occur continuously

characteristics of individuals in Genetic causes a population may be due to Variation: difference in the (inheritance) **Environmental** causes (condition they have developed in) A combination of genes and

environment

All genetic variation arises in mutation, most

have no effect on phenotype, some influence

but very few determine phenotype.

The genome and its interaction with the environment

influence the development of phenotypes

There is usually extensive genetic variation within the population of a species e.g. hair colour, skin colour, height that can also be affected by environment e.g. nutrition, sunlight.

all of the offspring would have the disorder. He must be heterozygous was homozygous dominant then a family tree: If the father

Variation

Embryo screening and gene therapy may alleviate suffering

Some disorders are inherited. They are caused by the inheritance of certain alleles

Polydactyly	Cystic fibrosis
Caused by inheriting a dominant allele.	Caused by inheriting a recessive allele (both parents have to at least carry it).
Causes a person/anim	A disorder of the cell membrane. Patients

Ordinary human body cells contain pairs of chromosomes

determination Sex

23

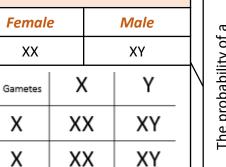
al to have extra toes or

fingers.

cannot control the viscosity of

their mucus.

Genetic inheritance


The concept of probability in predicting results of a single gene cross.

Dominant and recessive allele combinations

Dominant	Recessive	
Represented by a capital letter e.g. B.	Represented by a lower case letter e.g. b.	

3 possible combinations: Homozygous dominant BB Heterozygous dominant Bb Homozygous recessive bb

One pair of chromosomes carry the genes that determine sex

PiXL

male of female child is 50%. The ratio is 1:1 The probability of a

Using a punnet square (using mouse fur
colour as an example)

colour as an example)				
Parent	Black fur	White fur		
phenotype				
Parent genotype	BB	bb		
	In each egg	In each sperm		
What gametes are present	B	b		

Gametes	b	b
В	>Bb	Bb
В	Bb	Bb

The probability of black fur offspring phenotype is 100%. All offspring genotypes are heterozygous (Bb).

Crossing two heterozygous mice (Bb)

Gametes	В	b
В	ВВ	Bb
b	Bb	bb

The probability of black fur is 75% and white fur 25%. The ratio of black to white mice is 3:1

Sex cells produced in meiosis. **Gamete** Chromosome A long chain of DNA found in the nucleus. Define terms linked to genetics Gene Small section of DNA that codes for a particular protein. Allele Alternate forms of the same gene. A type of allele – always expressed if only one copy present **Dominant** and when paired with a recessive allele. A type of allele – only expressed when paired with another Recessive recessive allele. Pair of the same alleles, dominant or recessive. Homozygous Two different alleles are present 1 dominant and 1 recessive. Heterozygous Alleles that are present for a particular feature e.g. Bb or bb Genotype Physical expression of an allele combination e.g. black fur, **Phenotype** blonde hair, blue eyes.

Some characteristics are controlled by a single gene e.g. fur colour, colour blindness.

Father

Sam

The alleles present, or genotype operate at a molecular level to develop characteristics that can be expressed as a phenotype.

Most characteristics are as a result of multiple genes interacting.