Scottish Blackface (Cytoplasmic Donor)

The theory of evolution by natural selection.

Species of

all living

things have

evolved

from simple

life forms

that first

developed

3 billion

years ago.

A change in the inherited

characteristics of a population over

time through the process of natural

selection.

Finn-Dorset

Direct Current Pulse

(Biology

only)

Tissue

culture

Cuttings

Embryo

Through natural selection of variants (genotypes) that give rise to phenotypes best suited to their environment or environmental change e.g. stronger, faster. This allows for variants to pass on their genotype to the next generation.

If two populations of one species become so different in phenotype that they can no longer interbreed to produce fertile offspring they have

Classification of living organisms **Evolutionary trees are a method** used by scientists to show how organisms are related

Use current classification data for living organisms and fossil data for extinct organisms

Selective breeding

Choosing parents with the desired

characteristics from a mixed

population

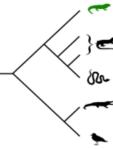
Chosen parents are bred together.

From the offspring those with

desired characteristics are bred

together.

Repeat over several generations


until all the offspring show the

desired characteristics.

Concern: effect of GMO on human

health not fully explored

Humans have been doing this for thousands of years since they first bred food from crops and domesticated animals.

Choosing characteristics

Desired characteristics are chosen for usefulness or appearance

Disease resistance in food crops.

Animals which produce more meat or milk.

Concern: effect of GMO on wild populations of flowers and insects.

PiXL

Selective breeding can lead to 'inbreeding' where some breeds are particularly prone to disease or inherited defects e.g. British Bulldogs have

breathing difficulties.

Domestic dogs with a

Large or unusual flowers.

gentle

nature.

Genes from the chromosomes of humans or other organisms can be 'cut out' and transferred to the cells of other organisms.

Genetically modified crops (GMD)

Crops that have genes from other organisms

more resistant to insect attack or herbicides.

To become

To increase the yield of the crop.

Evolution

Cloning techniques in plants/animals

formed two new species.

AQA GCSE INHERITANCE VARIATION AND EVOLUTION

PART 3

Small groups of cells to

grow new plants. Important

for preservation of rare

plants and commercially in

nurseries.

Part of a plant is cut off and

grown into full plant.

Splitting apart cells from

The process by which humans breed plants/animals for particular genetic characteristics

Darwin's finches

Selective breeding

Genetic engineering

Modern medical is exploring the possibility of GM to over come inherited disorders e.g. cystic fibrosis

animals embryo before they become specialised. New transplants clone embryos are inserted into womb of adult female.

Concern: some people have ethical objections to adult cell cloning e.g. welfare of the animals.

Adult cell cloning

- 2. Nucleus from body cell is inserted into egg cell.
- 3. An electric shock stimulates the egg to divide into an embryo
- 4. Embryo cells are genetically identical to adult cells.
- 5. When embryo has developed into ball of cells it is inserted into host womb.

Genetic engineering process (HT only)

- 1. Enzymes are used to isolate the required gene.
- 2. Gene is inserted into a vector bacterial plasmid or virus.
- 3. Vector inserts genes into the required cells.
- 4. Genes are transferred to plants/animals/microbes at an early stage of development so they develop the required characteristics.

- 1. Nucleus is removed from an unfertilised egg.

have plasmids with the foreign