



Crude oil	A finite resource	Consisting mainly of plankton that was buried in the mud, crude oil is the remains of ancient biomass.
Hydrocarbons	These make up the majority of the compounds in crude oil	Most of these hydrocarbons are called alkanes.
General formula	_	For example:
for alkanes	C_nH_{2n+2}	C₂H ₆
		61114

Fractions can be processed to **Using** produce fuels and fractions feedstock for petrochemical industry

into fractions

Fractions

Each fraction contains molecules with a similar The hydrocarbons in number of carbon atoms in crude oil can be split them. The process used to do this is called fractional distillation. We depend on many of these fuels; petrol, diesel and kerosene.

PiXL

Butane

Petrol

Diesel

& Propane

Many useful materials are made by the petrochemical industry; solvents, lubricants and polymers.

AQA GCSE Organic chemistry 1

and feedstock

Carbon compounds as fuels and feedstock

Fractional distillation and petrochemicals

in lots of different lengths. The boiling point of the chain depends on its length. During fractional distillation, they boil and separate at different temperatures due to this.

Hydrocarbon chains in crude oil come

Crude Oil 370 °C

The oil is neated in a furnace

Fuel Oil 400 °C Parrafin Wax, **Asphalt**

150°C

200 °C

300°C

Cracking and alkenes

Combustion

Decane → pentane + propene + ethane

 $C_{10}H_{22} \rightarrow C_5H_{12} + C_3H_6 + C_2H_4$

During the complete combustion of hydrocarbons, the carbon and hydrogen in the fuels are oxidised, releasing carbon dioxide, water and energy.

The breaking down of long chain Cracking hydrocarbons into smaller chains

Catalytic cracking

Steam cracking

The smaller chains are more useful. Cracking can be done by various methods including catalytic cracking and steam cracking.

After vaporisation, the vapour is

passed over a hot catalyst

hydrocarbons.

hydrocarbons.

forming smaller, more useful

Alkenes and uses as

polymers

Why do

we crack

long

chains?

Used to produce polymers. They are also used as the starting materials of many other chemicals, such as alcohol, plastics and detergents.

Hydrocarbon chains

<u>u</u>

Properties of hydrocarbons

Without cracking, many of the long hydrocarbons would be wasted as there is not much demand for these as for the shorter chains.

Complete combustion of methane: Methane + oxygen → carbon dioxide + water + energy $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2 H_2O(I)$

heated until vaporised

The heavy fraction is

heated until

vaporised

The heavy fraction is

After vaporisation, the vapour is mixed with steam and heated to a very high temperature forming smaller, more useful

Boiling point As the hydrocarbon chain length (temperature at increases, boiling point increases. which liquid boils)

Viscosity (how easily it flows)

As the hydrocarbon chain length increases, viscosity increases.

Flammability (how easily it burns)

As the hydrocarbon chain length increases, flammability decreases.